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The following questions were addressed:

- Can the carotenoid antenna of xanthorhodopsin be removed and reconstituted?

- Which groups (atoms) of the carotenoid are crucial for its binding and energy transfer?

- Which residues of the protein are important for antenna binding?

- Are there other retinal proteins that bind carotenoids and use them for light-harvesting? 

- Can carotenoid serve as a sensor for the intramolecular processes in energy conversion?

- Does the carotenoid undergo changes during the excitation of retinal, during the reactions of the photocycle and upon laser 

damage of the retinal protein?

- How do light-induced proton release and uptake correlate with photocycle reactions?

- Do the distinctively different structural features of xanthorhodopsin (compared to bacteriorhodopsin) correlate with their 

different mechanisms for proton release?

- Are these features common to other eubacterial proton pumps (e.g., proteorhodopsin, gloeobacter rhodopsin, ESR).

Summary of the most important results:

1. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. 

Salinixanthin, a C40-carotenoid, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of 

Salinibacter ruber. This study shows that the carotenoid could be removed by oxidation with ammonium persulfate, with little 

effect on the absorption spectrum of other chromophore, retinal, and on the kinetics of the photocycle of xanthorhodopsin. The 

carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. This restores the 

vibronic structure of the absorption spectrum of the bound carotenoid, its chirality, and the excited-state energy transfer to 

retinal. Surprisingly, minor modification of salinixanthin, by reducing the C=O double bond of the 4-keto group in the ring to 

C-OH, suppresses carotenoid binding and eliminates the antenna function. This indicates that the presence of the 4-keto group 

is critical for carotenoid binding and efficient energy transfer. Published in: Imasheva, E. S., S. P. Balashov, J. M. Wang and J. 

K. Lanyi. 2011. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J. Membrane Biol. 239, 95-104. DOI: 

10.1007/s00232-010-9322-x.

2. Reconstitution of gloeobacter rhodopsin with salinixanthin from Salinibacter ruber: Evidence for existence of other retinal 

proteins with light-harvesting antenna.

It was demonstrated that salinixanthin can be reconstituted into the retinal protein from Gloeobacter violaceus expressed in E. 

coli. Reconstitution of gloeobacter rhodopsin with the carotenoid is accompanied by characteristic absorption changes from 

sharpening of carotenoid absorption bands and the appearance of CD bands similar to those observed for xanthorhodopsin 

that indicate immobilization and twist of the carotenoid in the binding site. As in xanthorhodopsin, the carotenoid functions as a 

light-harvesting antenna. The excitation spectrum for retinal fluorescence emission shows that ca. 36% of the energy absorbed 

by the carotenoid is transferred to the retinal. From excitation anisotropy, the angle between the two chromophores was 

estimated as ca. 50º, similar to that in xanthorhodopsin. The results indicate that gloeobacter rhodopsin binds salinixanthin in a 

similar way as xanthorhodopsin, and suggest that it might bind similar carotenoid also in vivo. In the crystallographic structure 

of xanthorhodopsin, the 4-keto-ring is in the space occupied by a tryptophan in bacteriorhodopsin, which is replaced by the 

smaller glycine in xanthorhodopsin and gloeobacter rhodopsin. Specific binding of the carotenoid and its light-harvesting 

function are eliminated by a single mutation of the gloeobacter protein that replaces this glycine with a tryptophan (in the 

G178W mutant). This indicates that the 4-keto-ring is critically involved in carotenoid binding, and suggests that a number of 

other recently identified retinal proteins, from a diverse group of organisms, could also contain carotenoid antenna since they 

carry the homologous glycine near the retinal. This study was published in Imasheva, E. S., S. P. Balashov, A. R. Choi, K.-H. 

Jung, J. K. Lanyi. 2009. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. 

Biochemistry 48, 10948-10955. DOI: 10.1021/bi901552x.

3. Reconstitution of gloeobacter rhodopsin with echinenone: crucial role of the 4-keto Group.  

In previous work (see point 2), salinixanthinwas reconstituted into gloeobacter rhodopsin expressed in E. coli. There is no 

salinixanthin in Gloeobacter violaceous, but a simpler carotenoid, echinenone, also with a 4-keto ring but lacking the acyl 

glycoside, is present in addition to beta-carotene and oscillol. Two questions were examined: do any of the native Gloeobacter 

carotenoids bind to gloeobacter rhodopsin, and does the 4-keto group of the carotenoid ring play a role in binding. 

Beta-carotene did not bind to gloeobacter rhodopsin, but its 4-keto derivative, echinenone, did. It functions as a light-harvesting 

antenna. This indicates that the 4-keto group is critical for the carotenoid binding. Further evidence for this is that an analogue 

of salinixanthin in which the C=O of the 4-keto group is reduced to hydroxyl C-OH, does not bind and is not engaged in energy 

transfer. It is suggested that the conjugated 4-keto group allowed for the twisted conformation of the ring around C6-C7 bond, 

and probably engaged in interaction that locks the carotenoid in the binding site. Published in: Balashov, S. P., E. S. Imasheva, 

A. R. Choi, K.-H. Jung, S. Liaaen-Jensen and J. K. Lanyi. 2010. Reconstitution of Gloeobacter rhodopsin with echinenone: role 

of the 4-keto group. Biochemistry 49, 9792-9799. DOI: 10.1021/bi1014166



4.  Primary reaction of xanthorhodopsin involves two consecutive K like states and perturbation of two water molecules. 

Comparison with bacteriorhodopsin.

With low-temperature FTIR spectroscopy at 80-180K it was shown that the bacteriorhodopsin (bR) and xanthorhodopsin (XR) 

photocycles include three distinct K-like bathochromic intermediates: bR (XR) -> K0-> KE-> KL->L. The bathoproduct K0 is the 

main component in the mixture formed at 80 K from J. It becomes thermally unstable above ~50 K in both proteins. At 80 K, 

both J-to-K0 and K0-to-KE transitions occur and, contrarily to long-standing belief, cryogenic trapping at 80 K does not produce 

a pure K state but a mixture of the two states, K0 and KE, with contributions from KE of ~15 and ~10% in the two retinal 

proteins, respectively. Raising the temperature leads to increasing conversion of K0 to KE. The two states coexist in the 80-140 

K range in bacteriorhodopsin, and in the 80-190 K range in xanthorhodopsin. The KE state, is the same intermediate that was 

detected by time-resolved FTIR, on a time scale of hundreds of nanoseconds at ambient temperature into the KL state. 

Formation of the two consecutive K-like states in both proteins is accompanied by distortion of two different weakly bound water 

molecules: one in K0, the other in KE. This study was published in: Dioumaev, A. K., J. M. Wang and J. K. Lanyi. 2010.  

Low-Temperature FTIR Study of Multiple K States in the Photocycles of Bacteriorhodopsin and Xanthorhodopsin. J. Phys. 

Chem. B. 114:2920-2931. DOI: 10.1021/jp908698f. 

5. A review summarizing features of xanthorhodopsin and its unique carotenoid antenna.

The recently solved crystal structure of xanthorhodopsin, the first for eubacterial proton pumps, reveals not only the location of 

the two chromophores but considerably different architecture of the protein compared to the archaeal bacteriorhodopsin. 

Steady state fluorescence and femtosecond absorption spectroscopy provided a wealth of information on the pathway of 

excitation energy transfer from carotenoid second excited state S2 to retinal S1 and properties of the excited states involved. 

Carotenoid reconstitution experiments revealed conditions for carotenoid binding. Studies of the photocycle and proton transfer 

indicate that in xanthorhodopsin the proton release follows proton uptake, similar to proteorhodopsin but in the opposite 

sequence as in bacteriorhodopsin. These features correlate with structural differences in the design of xanthorhodopsin and 

bacteriorhodopsin, and suggest different means of proton transfer, especially proton release at the extracellular side in 

eubacterial proton pumps. Published in: Lanyi, J. K. and S. P. Balashov. 2011. Xanthorhodopsin. In “Halophiles and 

Hypersoline environments” (eds. A. Ventosa, A. Oren, Y. Ma). Springer Verlag, p. 319-340. (Book Chapter). DOI: 

10.1007/978-3-642-20198-1_17 

6. Laser-induced damage of xanthorhodopsin. First characterization of the photoproducts.

 Laser-induced irreversible damage of xanthorhodopsin with 532 nm 6 ns flashes was found to occur starting at a threshold 

pulse intensity of ca 10 mJ/cm2. It results in formation of two stable photoproducts. One is a red shifted species that indicates 

neutralization of the counterion. The second product accumulates at higher doses and absorbs at 350 nm. This short 

wavelength absorption suggests deprotonation of the Schiff base. The absorption spectrum of the carotenoid antenna does not 

change significantly when native cell membranes were used in the experiments. This indicates that the damaged retinal 

chromophore remains attached to the protein since removal of the retinal from the binding site results in large changes in the 

bound salinixanthin that looses fine structure of its absorption spectrum.

7. Response of carotenoid antenna of xanthorhodopsin to retinal excitation and photoisomerization. 

Excitation of the retinal chromophore of xanthorhodopsin (XR) induced a blue shift of the absorption band of the carotenoid 

salinixanthin, which is bound to the protein in vicinity of retinal and functions as a light-harvesting antenna. The shift was 

interpreted as electrochromic response to the strong transient electrostatic field of ca. 2.8 MV.cm-1 produced by transition of 

retinal to the excited state. The blue shift decays with the decay of the excited state of retinal but small part of it remains in the 

primary photoproduct K. The life time of the retinal excited state in XR decayed in biphasic manner with time constants 0.7 ps 

(70%) and 3 ps (30%), substantially slower than in bacteriorhodopsin, 0.4 ps (91%) and 2.1 ps (9%). Analysis of the carotenoid 

spectral shifts indicate that an internal field of 1.6 MV.cm-1 is present in the protein in the vicinity of the chromophores in the 

ground state.  Published in a paper: Šlouf, V., S. P. Balashov, J. K. Lanyi, T. Polívka. 2011. Carotenoid response to retinal 

excitation and photoisomerization dynamics in xanthorhodopsin. Chem. Phys. Letters 516, 96-101. DOI: 

10.1016/j.cplett.2011.09.062

8. The kinetics of light-induced proton release and proton uptake was studied with pH sensitive dyes, pyranine at pH 7.2 and 

thymol blue at pH 9. At both pH the uptake occurred first and followed the decay of the M intermediate, whereas proton release 

was at the end of the photocycle with time constant ca. 100 ms at pH 7.2. This is similar to proteorhodopsin but different from 

bacteriorhodopsin where release occurs first. Correlation of proton transfer steps with photocycle reactions and carotenoid 

absorption changes was established.

9. Structural differences between xanthorhodopsin and bacteriorhodopsin, and their implications for proton release in 

eubacterial rhodopsins was examined. The crystallographic structure of xanthorhodopsin indicates that in this eubacterial 



light-driven proton pump the extensive extracellular hydrogen-bonded network observed in bacteriorhodopsin is absent. It is 

replaced by a deep water-filled cleft that reaches into the protein nearly as far as the retinal Schiff base. In xanthorhodopsin, 

and in eubacterial rhodopsins in general, of the two glutamic acid residues in bacteriorhodopsin that participate in proton 

release (Glu194, Glu204), only one is conserved, and at a location too far removed to be affected by protonation of the Schiff 

base counter-ion, which is now a histidine-aspartate complex rather than an aspartate. As a consequence, proton release is 

delayed until the last step of the photocycle, as in proteorhodopsin, and at that step it must utilize different residues to conduct 

the protons to the bulk.  Is there a xanthorhodopsin-like cleft in other eubacterial proton pumps? This intriguing question was 

addressed experimentally. Bacteriorhodopsin, proteorhodopsin, and gloeobacter rhodopsin residues at several strategic 

locations on their extracellular surface and in the putative proton release channel were replaced with cysteine, and tested their 

reactivities with DTNB, the water soluble Edman-reagent for SH groups. The residues were selected for their strongly different 

accessibilities to water in bacteriorhodopsin and xanthorhodopsin. The results indicate that in the eubacterial proteins tested 

access followed the predictions from xanthorhodopsin structure, rather than from bacteriorhodopsin. From these results one 

can conclude that the structure of the extracellular surface, and therefore the means available for proton release, are 

fundamentally different in the archaeal and the eubacterial proton transport rhodopsins.

10. Asp-His interaction in proton pump from Exiguobacterium sibiricum homologous to xanthorodopsin. One of the distinctive 

features of eubacterial retinal based proton pumps, xanthorhodopsin, proteorhodopsins, and others, is hydrogen bonding of the 

key aspartate residue, the counterion to the retinal Schiff base, to a histidine. Properties of the recently found eubacterium 

proton pump from Exiguobacterium sibiricum (named ESR) expressed in E. coli, especially features that depend on Asp-His 

interaction, the protonation state of the key aspartate, Asp85, and its ability to accept proton from the Schiff base during the 

photocycle were examined. Proton pumping by liposomes and E. coli cells containing ESR occurs in a broad pH range above 

pH 4.5. Large light-induced pH changes indicate that ESR is a potent proton pump. Replacement of His57 with methionine or 

asparagine strongly affects the pH dependent properties of ESR. In the H57M mutant a dramatic decrease in the quantum yield 

of chromophore fluorescence emission and a 45 nm blue shift of the absorption maximum upon raising the pH from 5 to 8 

indicates deprotonation of the counterion with a pKa of 6.3, which is also the pKa at which the M intermediate is observed in the 

photocycle of the protein solubilized in detergent (DDM). This is in contrast with the wild type protein, in which the same 

experiments show that the major fraction of Asp85 is deprotonated at pH > 3 and that it protonates only at low pH, with a pKa of 

2.3. The M intermediate in the wild type photocycle accumulates only at high pH, with an apparent pKa of 9 from deprotonation 

of a residue interacting with Asp85, presumably His57. In liposomes reconstituted with ESR the pKas for M formation and 

spectral shifts are 2-3 pH units lower than in DDM. The distinctively different pH dependencies of the protonation of Asp85 and 

the accumulation of the M intermediate in the wild type protein vs. the H57M mutant indicate that there is strong Asp-His 

interaction, which substantially lowers the pKa of Asp85 by stabilizing its deprotonated state. Described in a paper Balashov, 

S.P. et al., 2012. Aspartate-Histidine Interaction in the Retinal Schiff Base Counterion of the Light-Driven Proton Pump of 

Exiguobacterium sibiricum. Biochemistry 51, 5748-5762. dx.doi.org/10.1021/bi300409m.
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